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Entry flow in a heated straight tube 

By LUN-SHIN Y A O  
The Rand Corporation, Santa Monica, Californiat 

(Received 9 August 1977) 

The developing flow in the entry region of a heated horizontal pipe is analysed. The 
asymptotic solution of the developing flow near the entrance of the heated straight 
pipe, distance O(a),  is obtained by perturbing the solution of the developing flow in an 
unheated straight pipe. Two vortices result from the combination of the radial- 
directional and the downward motions of the fluid particles which are induced by the 
displacement of the boundary layer and develop along the pipe. The axial velocity has 
a concave profile in the inviscid core with its maximum off the centre-line near the 
entrance and it grows toward a uniformly distributed profile downstream. The down- 
ward stream caused by the displacement of the secondary boundary layer forces the 
axial velocity profile to turn anticlockwise continuously along the pipe if the flow is 
from left to right. The core flow induced by the axial boundary-layer displacement 
generates a favourable pressure gradient. Simultaneously, the secondary boundary- 
layer displacement affects the core flow to induce a favourable pressure gradient on the 
bottom of the pipe and an unfavourable pressure gradient on the top wall. The effect 
of the axial boundary-layer displacement is stronger than that of the secondary 
boundary layer near to the entrance. Downstream the growth of the boundary-layer 
thickness is suppressed by the inviscid secondary flow. It is expected that the displace- 
ment effect of the secondary boundary layer becomes dominant downstream from the 
region of O(a) when Gr is large. 

1. Introduction 
The entry developing flow in pipes has been of great importance in a number of 

engineering devices. Also, it has attracted many researchers’ interests because i t  is a 
standard problem in laminar-flow theory (see Yao 1977). 

In  this paper we study the entry-developing flow in a heated straight pipe under the 
conditions of constant wall heat flux. The solution is valid within the distance O(a) 
from the pipe entrance. The inlet velocity Win is uniformly distributed. The wall of the 
pipe is maintained at the constant heat flux qw. The goverhing parameters of the 
problem are [see (2)]: 

I Wina (i) the Reynolds number Re = - 
v ’  

yw4qu, (ii) the Grashof number 

(iii) the Prandtl number 

Gr = - 
kv2 ’ 

Pr = - 
K ’  

V 

Gr 
Re$ 

(iv) the ratio 

t Present address : Department of Mechanical and Industrial Engineering, University of 

e = - (constant wall heat flux), 

Illinois, Urbana, Illinois 61801, 
16 F L Y  88 



466 L.-8. Y m  

where a is the radius of the pipe, v is the kinematic viscosity, y is the thermal expansion 
coefficient, g is the gravitational acceleration, K is the thermal diffusivity, and k is the 
thermal conductivity. 

The physical meaning of E is the ratio of the buoyancy force and the viscous forces. 
It should be noted that when 8 is small it  does not necessarily imply that the heat trans- 
fer rate is small, because E can be small when Re is large. It is also worth mentioning 
that the entry laminar flow is not restricted by the critical Reynolds number, 
Recrltical = 1000, of the fully developed flow in an unheated straight pipe. In other 
words, the entry flow can be laminar even when Re > 1000, but the flow transition 
may occur before it becomes fully developed. 

The entry condition (velocity distribution) of a pipe flow has attracted substantial 
attention from the fluid mechanics community (see Van Dyke 1970; Wilson 1971; 
Smith 1976). Smith (1976) studied the transition of Poiseuille flow from a straight pipe 
into a curved one. However, the solution obtained by Smith is valid only for very 
small Z, N O(Re-2). Thus strong upstream influence of the curved pipe on the transition 
of the Poiseuille flow which was observed by Ito (1961) is not predicted in Smith’s 
solution. There are two popular idealized entry conditions for the entry pipe flow 
problem : uniformly distributed axial velocity profile and Poiseuille flow. In reality, 
none of them can be obtained easily. Ideally, the Poiseuille flow might be obtained by 
connecting a long straight pipe to a curved pipe of the same diameter. However, owing 
to the strong upstream curvature effect, the flow starts to deviate from Poiseuille flow 
far upstream before the fluid gets into the curved pipe. Similar flow development can 
occur in a heated straight pipe. Therefore, in reality, Poiseuille flow cannot be obtained 
at  the entrance of a curved pipe or a heated straight pipe. On the contrary, the uniformly 
distributed velocity can be achieved to a degree by connecting a rapid well-rounded 
contraction and boundary-layer suction ahead of the pipe entrance. This method was 
used by Agrawal, Talbot & Gong (1978) in their experimental study of the entry flow in 
curved pipes, and by Barker & Jennings (1977) in +heir study of the entry flow in a 
heated straight pipe. 

In this paper, the idealized entry condition, a uniformly distributed axial velocity 
profile, is assumed to  study the flow development in a heated straight pipe. The related 
works on the entry flow in an unheated straight pipe as well as in an unheated curved 
pipe are briefly reviewed before the discussion of the physics of the entry flow in a 
hea-ted straight pipe. 

[Jnheated straight pipes 
Previous work on developing flow in unheated straight pipes or two-dimensional 
channels falls into the following four categories: (i) linearization of the momentum 
equations; (ii) two-zone models, in which a boundary-layer flow mat.ches with the 
downstream perturbation solution for the fully developed flow ; (iii) momentum- 
integral techniques; and (iv) finite-difference solutions. A detailed review of the 
published papers falling into the above four categories has been summarized by Yao & 
Berger (1975). From a critical analysis of the entry flow problem, Van Dyke (1970) 
pointed out that there are two length scales in channel entry flow: a, the half-width of 
the channel, and aRe. Most of t,he early work on this problem is only valid for down- 
stream distance O(aRe). Van Dyke obtained a solution in the upstream region, for 
distance O(a),  and so reconciled the discrepancy between the earlier theoretical results 
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and the experimental data near the entrance of the channel. Independently, a similar, 
but more detailed mathematical analysis was given by Wilson (197 1). 

Curved pipes 

TWO parameters govern the developing entry flow in curved pipes: Z, the curvature 
ratio; D = &Re, the Dean number (Dean 1927, 1928). The curvature ratio ti is defined 
as the ratio of a and R, where R is the radius of curvature ofthe curved pipe; therefore, 
the value of E cannot be larger than one. The influence of the centrifugal force on the 
entry flow development depends on the value of Z. So far, there is not suficient 
information to define for how small an Singh’s solution (1974) is correct or for how 
large an Z Pao & Berger’s solution (1975) is valid. This question can only be answered 
by comparing Singh’s solution or Yao & Berger’s solution with a numerical solution of 
the Navier-Stokes equations or a careful experimental measurement on many curved 
pipes of different E. Unfortunately, none of them are available. In the following 
discussion, the value of E is defined in the asymptotic sense. When we say E is small, it 
means that E is only slightly larger than zero (Agrawal et al. (1978) showed experi- 
mentally that Singh’s solution is not accurate when E 2 0.05); when ?i is large, it 
means that the value ofE is not smaller than 0.5 but smaller than one. The entry flow in 
curved pipes can be categorized into the following three cases (for details see Yao 1977): 

(i) When both ?i and D are small, the flow is slightly distorted from the entry flow in 
unheated straight pipes, and the solution can be obtained by perturbing the solution 
of the developing flow in unheated straight pipes. There are two regions: O(a) and 
O(aRe). The matched asymptotic solution for the region of O(a) was given by Singh 
(1974) and breaks down at  a distance O(a/i&), corresponding physically to the point 
beyond which the effect of the centrifugal force, initially small, becomes as important 
as inertia and viscous forces within the boundary layer. There are two misprints in 
Singh’s paper. The term ‘- COS(TS’ in equations (83) and (84) should be replaced by 
‘ 1 - cos (TS’ in order to satisfy the entry conditions (10) in his paper (see Singh 1974). 
Also, the matched asymptotic solution developed for the region a distance O(a) appar- 
ently breaks down a t  a distance O(aRe), since aRe is the length scale ofthe region that 
flow traverses to the fully developed flow in unheated straight pipes. There are two 
possible length scales for the region downstream of the region distance O(a) from 
the entrance. However, aRe < a/& when D is small. This suggests that the flow will 
be fully developed before centrifugal forces lose their secondary role, when D is 
small. 

(ii) When 5 is small and D is large, there are three length scales: a, a/&, and aRe/DJ. 
The solutions ofregions distances O(a/EJ)  and O(aRelD4) were given by Yao & Rerger 
(1975). The solution of the region a distance O(aRelD4) asymptotically approaches 
the fully developed state (Baura’s flow 1963).t 

It is interesting to note that the size ofthe region where Singh’s flow is valid depends 
on the values of E. It shrinks as the values of ?i increase. 

(iii) When both Ol and D are large, the region governed by Singh’s flow is shrunk to 
zero. For this case, the developing flow is governed by the solution presented by Yao & 
Berger (1975). 

t The author wishes to thank the referee for pointing out that Baura’s solution is only a crude 
approximation. 

16-2 
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Heated straight pipes 
The developing flow in heated straight pipes can be categorized into cases similar to the 
developing flow in curved pipes. 

(i) When E ,  Grand Re Gr are small, there are two regions: O(a) and O(aRe). The flow 
deviates slightly from the developing Poiseuille flow. 

(ii) When E and Gr are small but Re Gr is large, the flow develops similarly to case (i) 
initially in the region z N O(a) and z N O(aRe).  However, the secondary flow grows 
further downstream and becomes a dominant component. The axial length scale is not 
known but may be in the form aRe/Gm where n is a constant. The fully developed flow 
of this case was studied by Mori & Futugami (1967). 

(iii) When E is small and Gr is large, the first two regions are O(a) and O ( u / d ) .  The 
flow will approach its fully developed stage in the third region; however, the charac- 
teristic length scale of the third region is not known and can only be found from the 
solution of the second region, z - O(a/s%), which is not available now. 

(iv) When E is large, the region z N O(a) does not exist. Besides this, the flow 
development is similar to case (iii). 

The fully developed flows in heated straight pipes under the condition of constant 
wall heat flux are given by Morton (1959) if ReRa is small and by Mori & Futagami 
(1967) if Re R a  is large. The solution presented in this paper is limited t o  the region 
distance O(a) from the inlet for constant wall heat flux conditions. The solution is valid 
when ezg is less than 0.1 (see Yao, Catton & McDonough 1978). 

The physics of the entry flow in a heated straight pipe when E is small and Gr is large 
can be visualized as in the following. 

As the fluid enters the pipe, a boundary layer develops on the wall with a secondary 
flow developed inside the boundary layer by the buoyancy forces due to the tempera- 
ture difference between the wall and the inlet fluid. The central inviscid flow will be 
accelerated by the displacement of the axial boundary layer like that, in an unheated 
straight pipe. This motion generates node-like sinks along the centre-line of the pipe 
and causes fluid particles to  move toward the centre of the pipe. Simultaneously, the 
displacement of the secondary boundary layer induces a uniform, downward stream 
on the cross-section of the pipe. The combination of the downward stream with the 
radial stream responds t o  the development of two vortices in the central core of the 
pipe. A saddle-point-like stagnation point, initially coincident with the centre-line, 
moves downward along the vertical symmetry line of the pipe, and the saddle-point- 
like stagnation point will stay in the core of the pipe within the region of O(a).  The axial 
velocity profile turns to accommodate the downward stream generated by the displace- 
ment of the secondary boundary layer: t h e  component of the axial pressure gradient 
induced by the secondary flow is negative along the bottom wall of the pipe and is 
positive along the top wall of the pipe. It is found that the temperature in the central 
core of the pipe does not change within the region of O(a)  and is identical to the inlet 
temperature. 

As the fluid enters the second region, Z N O(a/E*), the secondary flow becomes 
important. The ratio of the secondary-flow velocity and the axial-flow velocity is 
of the order of E in z N O(a) and increases to E% in x N O(a/s%) (see Yao et al. 1978). 
The interaction of the secondary flow and the axial flow becomes so important that the 
perturbation solution, z N O(a), is not valid any more. No solution is available in the 
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region z - O(a/s?). Owing to the similarity between the flow in heated straight pipes and 
in curved pipes, the physics can be intuitively visualized as in the following. The down- 
ward inviscid stream increases and forms a three-dimensional stagnation flow along 
the bottom wall of the pipe. This stream may prevent the boundary layer from diffusing 
away; also, the fluid is sucked into the boundary layer in order to maintain the 
secondary boundary layer. These two mechanisms may cause the boundary layer to thin 
along the bottom wall of the pipe as the fluid moves downstream. Since the magnitude 
of the downward stream increeses, the temperature of the central core flow gradually 
increases. The velocit'y profile of the central inviscid flow also gradually turns to 
accommodate the increasing downward stream. Since the thickness of the axial 
boundary layer does not grow very much in this region, the acceleration of the inviscid 
core flow, due to the displacement effect of the axial boundary layer, also slows down. 

The flow approaches its fully developed stage in the region z - O(a/sn), where 
n < $ is not known but can be found from the solution of the region z - O(a/e?). It is 
difficult to visualize the flow development in this region, now. However, following the 
flow development in curved pipes and the experimental evidence of the fully developed 
flow in heated straight pipes, we might say that a three-dimensional separation starts 
to occur along the top wall of the pipe. The effect of the boundary-layer separation on 
the development of the inviscid core flow further complicates the problem. No rigorous 
solution of the flow development is available now. The study of the flow development 
in this region is worth while and can shed light on the physics of the flow pattern for 
a fully developed flow in heated straight pipes where Qr is large as well as for a fully 
developed flow in curved pipes when D is large. 

As the flow approaches its fully developed stage, the difference between the wall 
temperature and the temperature of the central core approaches a constant. The 
buoyancy force constantly exists; the secondary flow can increase the heat transfer 
rate by mixing the fluid in the boundary layer and in the central core. The mixing can, 
also, stabilize the pipe flow; the transition Reynolds number in heated straight pipes 
is much higher than that in unheated straight pipes. 

The solution in this paper is for the region a distance O(a) from the pipe entrance. 
The solution is valid when e is small and can be applied to the cases (i), (ii), and (iii). 
Barker & Jennings (1977) studied the transition of the boundary layer in a heated 
straight pipe. The inlet condition in their experiment was a uniformly distributed 
velocity profile. Unfortunately, no instrumentation is allowed to be installed inside 
the pipe for a high-speed flow transition study. Therefore, we cannot compare our 
theory with their experiment. 

2. Governing equations 
Near the inlet it is natural to refer lengths to the radius a of the pipe, and velocities 

to the uniform inlet velocity Win (figure 1).  The pressure is non-dimensionalized by 
pin WiZ,, where pin is the density. The dimensionless temperaimre is defined in terms of 
the inlet temperature, Tin, and the constant wall heat flux, q,, as 

0 = (5" -Tin) kRe3/uq,. 

The fluid density variation due to heating is considered only important in the form of 
the buoyancy forces. This is known as the Boussinesq approximation, which is valid 
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when the change of the fluid density is small compared with the fluid density. In  
cylindrical polars the dimensionless equations of motion and energy with the 
Boussinesq approximation become 

ia(ru) i a v  aw -- +--+- = 0, 
r ar r a$ az 

au vau au v2 a p  u 2 a v  u-+---+w ---=-- +€(a - 0,) 
ar r a# az r ar Re 

where 

ao vao ao 1 
ar r 84 az PrRe 

77-+- - + w- = -v20, 

(3) 

is the Laplace operator, @,(z) is the temperature along the centre-line of the pipe. 
The parameters B, Re and Pr are defined in (1) .  

The entry condition is uniform inlet axial velocity and temperature; the reference 
pressure a t  the inlet is set equal to zero. It may be noted that, in the absence of 
viscosity, the exact solution of (2) satisfying the above inlet condition and slip wall 
condition is 

w = 1 ,  U = V V = P = @ = O .  (4) 

3. Solutions 
As the fluid flows into the pipe, the; viscous forces are confined to the thin boundary 

layer near the wall of the pipe. For a heated pipe the secondary flow is created by the 
buoyancy forces inside the thermal boundary layer. The ratio of the thicknesses of 
the thermal boundary layer to the momentum boundary layer depends on the Prandtl 
number. Viscous forces and heat conduction can be ignored away from the 
boundary layer; the flow is isothermal and inviscid in the central core of the pipe. The 
core flow is accelerated owing to the displacement effect of the boundary layer and fluid 
particles will be displaced from the wall toward the centre of the pipe. Simultaneously, 
a downward stream is developed due to the displacement effect of the secondary 
boundary layer. The combination of the radial-direction motion with the downward 
one gives the stream pattern of two developing vortices on the cross-section normal to 
the axis of the pipe. The downward stream will also skew the axial velocity by 
accelerating it below the centre and decelerating it above the centre of the pipe. The 
analysis shows that the development of the secondary flow due to the heating effect 
near the entrance when e is small can be obtained by perturbing the solution of the 
developing flow in an unheated pipe, 
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FIQURE 1. Co-ordinate systems. 

Zeroth-order solution in the inviscid core 

The solution of the inviscid core flow can be obtained by expanding the dependent 
variables into series 

(5) 1 
u = UO+8U1+ ..., 
v = &+a&+ ..., 
w = W0+8W,+ ..., 
P = Po+8P,+ ..., 
0 = 0 , + 8 0 , +  ..., 
0, = 0 ; + 8 0 ; +  ..., 

where S is the expansion parameter and can be determined by matching with the 
zeroth-order boundary-layer flow. It can be shown that it is equal to 1IReB. The 
governing equations of the first order can be obtained by taking the limit of Re + 03 

from (2). The zeroth-order solutions which satisfy the uniform inlet velocity and tem- 
perature conditions and the slip condition at the pipe wall are just the undisturbed 
flow, which is given in (4). 

Zeroth-order boundary-layer j b w  
Near the pipe wall, the viscous forces and heat conduction normal to the wall become 
important. The radial co-ordinate r is stretched to reflect this physical fact. Ac- 
cordingly, we introduce the inner variables, as in the classical boundary layer. 

r =  1-87, U = - 8 u ,  T'(r,$,z)=v(F,$,z) ,  etc. (6) 

Combination of ( 2 )  and (6), after neglecting the smaller-order terms, yields 

a29 av av av ap 
a7 a+ az a+ a72 9 

u- + v- + w - = - - + e(0 - 0,) sin $ + - 
(7) 
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Pr 0.01 1.0 10.0 

PI 

B s  

1.2167 1.2167 1.2167 
23.351 1 0.9062 0.1524 

TABLE 1. Constants from the computation of the boundary-layer flow. 

The associated boundary conditions of (7) are as follows. 
At x = o ,  u = v = e = o ,  w = i  (entrance condition). 

At r = 0, 21 = v = w = 0, Or = - 1 (no-slip condition at wall), 

AS ~ + c o , v - + o , w + ~ , ~ + o  (matching condition with zeroth- 
(constant wall heat flux). 

order inviscid core flow). 

The dependent variables can be expanded as, when e is small, 

w = f;+t$2z)$F;cosq5+ ..., 
v = e(2x)*Fksinq5+ ..., 

1 
u=- (7fA-fO) +s(2z)2((rlFI-6F1-F2)cosq5 + a a . 2  

e = (2~) t e ,+E(22)3~C0s~+  ... . 
(9c) 

( 9 4  
The functions f,, Fl, F,, 8, and G depend on 7 only, where 7 = r/(2z)4 known as the 
Blasius variable. The governing equations for f,, O,, Fl, 4, and G are 

(2214 

f; + f, f; = 0, 

- O; +fos; -f;e, = 0, 

F; +fop; - 3j; F; = - e,, 

( l o b )  

Fy+foF'i-5f;Fi+6f,"Pl = -f,"F2, (104 

( 1 0 4  

( loel  

1 
Pr 

1 
- Pr G" + foG' - 6fhG = - 8,Fi - Oh(6F1- F 2 ) .  

The boundary conditions on (10) are 

( I l a )  

( l i b )  PI, F;,G-+O as 7 + m .  
The boundary-layer velocity u, normal to the wall along the interface of the boundary 

(1W 

where p3 = lim(6Fl+F2). (12b) 

1 fo= f ; = o ,  0;=-1  a t  q = o ,  

f ;+i ,  e,+O as r-tcg, 

I and Fl = F; = F, = FL = G' = 0 at 7 = 0, 

layer and the inviscid core flow, is 
Ul(r = 1) = --++3e(22)2cosq5+..., A 

224 

7--fw 

Equation (12a) is the matching condition for the second-order inviscid core flow. The 
values of p1 and p3 for different Prandtl numbers are obtained by the numerical 
integration of (10) and are listed in table 1,  
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First-order inviscid core JEow 

The equations of the first-order inviscid core flow are found by substituting ( 4 )  and ( 5 )  
into ( 2 ) .  They are 

a@, 
az 
-- - 0. 

The temperature of the inviscid core flow, up to this order, is still not changed and is 
equal to the inlet temperature. This is confirmed by (13e ) ,  the solution of which is 
0, = 0. Therefore, there is no buoyancy force acting on the fluid in the central core of 
the pipe. Equations (13a)  to (13d)  can be separated into two parts: the accelerating 
axial flow due to the displacement effect of axial boundary layer and the downward 
stream due to the displacement effect of the secondary boundary layer. The equations 
governing the two phenomena are found by substituting 

1 
u, = ulo+sul ,cos~+ ..., 
v, = “v , ,S in4+ ..., 
w, = Wlo+Ewl,cos~+ ..., 
Pl = PlOfEPl1COSQ)+ ... 

into (13)  when E is small. After collecting the terms without s and with E ,  we have 

and 
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Displacement effect, O(6). The appropriate matching condition for (15) is 

U,, = -/3,/(22)4 at r = 1, (17a) 

P,, = W,, = 0 at z = 0. (17b) 

w,, = - P,,. (18) 

and the entry conditions are 

Integrating (15c) with respect to z and using (17 b) gives 

Eliminating V,, and W,, from (15a), (15b), and (18) results in 

The solution of (19) satisfying condition (17a) can be found by Fourier transformation 
in the sense of generalized functions (see Lighthill 1958). It is 

where I, and I, are modified Bessel functions. 
Substituting (20a) into (15b) and (15c), we obtain 

and 

The asymptotic values of (20) for large z can be easily found: 

W,, = -P1, = p12(2z)4 1 + -  -+... , [ : (& I 
U,, = -P1r ( 2 z ) t .  (21 b) 

Equations (20) or (21) represent the accelerating flow due to the displacement effect of 
the boundary layer in an unheated pipe. 

Secondary displacement efect, O(6e). The appropriate matching condition for (15) 
is, from (12), 

and 

U,, = ,83(22)2 at r = 1, 

P,, = W,, = 0 at z = 0. 

With conditions (22a), the solutions of (16) are 

u1, = - q 1  = p3(2z)2, (22c) 

where #(a) is the first derivative of the delta function. 
The analysis can be extended systematically to obtain higher-order terms of the 

solution in the boundary layer and the core. The temperature of the central core is not 
changed up to O(6e); however, the downward convection, 0 ( 6 ~ ) ,  will carry the hotter 
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FIGURE 2. First-order temperature 8,. __ , constant wall temperature ; 
, constant wall heat flux. 
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tl 

FIGURE 3. Function G. 

fluid from the boundary ( -  trr < q5 &n) into the cooler core and will increase the 
temperature of the core flow. The small temperature variation is not considered in this 
paper. 

4. Results and discussion 
Boundary-layer $ow 

The numerical results for the functions @,, G ,  F,, F;, F,, and FL are plotted in 
figures 2-7. The values of 8, for the case of constant qu, are larger than those for the 
case of constant T, (Yao & Catton 1976, 1977). The wall temperature for the case 
of constant q,, increases downstream, and its values can be calculated from ( 9 d ) .  The 
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FIGURE 4. Function Fl.  __ , constant qw ; - - - - , constant T, (Pr  = 0.01). 
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, constant T, (Pr  = 0.01). FIGURE 5 .  Function a;. __ , constant q w ;  - - - - 
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FIGURE 6. Function F2. __ , constant q s ;  - - - - , constant Tw (Pr = 
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0.01). 

FIGURE 7. Function Pi. - , constant qw ; - - - - , constant T, (Pr = 0.01). 
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Pr OO(0) Q(0) m O ) / f , ” ( O )  m-0 
0.01 9-1173 4.6807 1.2085 7.1801 
1.0 1.5409 1.0053 0.0990 0-7914 

10.0 0.7087 0.0958 0.0198 0.2309 

TABLE 2. Coefficients for wall temperature and shear stress. 

values of 8, and GI for Pr = 0.01,1.0, and 10 are listed in table 2. In  figure 3 the values 
of the perturbed temperature are positive near the wall and negative near the core. 
The stream function E;, shown in figure 4, indicates their values are much larger than 
those for the case of constant T,. The induced axial velocity profile has more profound 
effects for the case of constant qw. Similarly, the buoyancy force induces stronger 
secondary flow at the constant wall heat flux than a t  the constant wall temperature 
shown in figures 6 and 7. 

Shear stress 

The local shear stress at the wall can be computed from the equation 

The contribution due to normal velocity gradient is a higher-order effect and is 
neglected here. Introducing the series expansions (9), the relative importance of the 
secondary flow on the axial shear stress can be found from 

where the subscript ‘ f c ’ denotes forced convection. The circumferential shear stress 
can be shown to be proportional to  

T,.+ N s(2z))  P~(o )  sin #. (24 ) 

Values of F ; ( O ) / f g ( O )  and &(O) are given in table 2.  Equations (9d) and (23) indicate 
that the secondary flow effect on the wall temperature and shear stress grows rapidly 
downstream, and is proportional to 28. This means that an initially small secondary 
effect, which may be treated as a second-order effect in the region a distant O(a) from 
the inlet, becomes a dominant flow component further downstream. 

Inviscid core $ow 
Equations ( 2 0 ~ - c )  are numerically integrated by using the fast Fourier transform 
(for details see Yao 1977). W,,//3, (or - Plo/fl1) is evaluated at  r = 0.5 as a function of Z, 
and plotted in figure 8. The values of W&//3, (or - PlO//3,) a t  r = 0 differ only slightly 
from their values at  r = 0.5 and are not presented in figure 8. W,, is the flow acceleration 
due to the displacement effect of the axial boundary layer. The flow is quickly 
accelerated near the entrance and the acceleration declines and is proportional to z-4 
downstream. The distributions of W,, (or PI,) on the cross-section normal to the pipe 
axis are given in figure 9. Near the entrance, z = 0.1, the axial velocity is higher close 
to the boundary layer than along the centre-line of the pipe. The delay of the flow 
acceleration near the centre-line causes the axial velocity profile to become concave. 
The velocity profile has its maximum velocity off the centre-line. The peaks are 
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I 1 I I 
0 - 4 6 8 1 

FIGURE 8. Displacement effect W,,/p, (or -.Pl0//3,). r /a  = 0.5. - - - -, asymptotic 
expansion for large values of z [equation (21)]. 

eroded downstream and eventually disappear at  z = 2.5 (see figure 8). A similar inter- 
pretation can be given to Plo, which is the pressure drop. 

The displacement effects of the secondary boundary layer are represented by 
functions W,, and Pll. Physically, the secondary boundary layer causes the axial flow 
to turn anticlockwise around the horizontal line passing through the centre of the pipe 
and normal to the axis of the pipe, Y = r cos $ = 0, and does not cause any net mean 
acceleration of the flow. 

The comparison of the asymptotic expansions with the exact evaluation of the sine 
integrals suggests that simpler asymptotic expansions can be used for practical 
application when z is larger than 2.5, which will cover most ranges of practical interest 
when e is small. The velocity components and the pressure, in their asymptotic forms, 
are 

P = -s(2z)32p1 1 +----- +...] -6c:4p3r(22) cos$h, [ r2'24"'-2 (25 a) 

(25 b )  

( 2 5 4  

( 2 5 4  

w = 1-P, 
U = -8{/?,[r(dz)++ . . . I-  ep3[(2z)2cos$+ ...I>, 
V = - Sep2 [ ( 2 ~ ) ~  sin 9 + . ..I. 

Pressure drop 

The pressure head will drop along the pipe when the flow is accelerated. The first term 
of (25a)  represents the pressure drop in an unheated pipe due to the displacement of 
the axial boundary layer. The pressure drops faster close to the edge of the boundary 
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FIGURE 9. Displacenient effect : pressure P,,/a,, velocity W,,/P, on the cross-sections 
at  z = 0.1, 0.5, 1.0, 2.5. -, Wl,//3, or -Pl0//&; - - - -, w,,//3, or -P11//33. 

layer than along the centre-line of the pipe where r = 0. The difference in the pressure 
distribution on the cross-section of the pipe disappears for large z, and the pressure 
distribution approaches 

The pressure distribution is disturbed when the pipe wall is heated, which is repre- 
sented by the second term of (25a) .  This term can be rewritten in (X, Y, z )  co-ordinates 
as 6€8@3 Yz, which shows that the displacement effect of the secondary boundary layer 
introduces an unfavourable pressure gradient over the upper half of the pipe flow, 
Y > 0, and a favourable one over the lower half of the pipe, Y < 0. 

P - --62P1(2Z)t. (26) 

- -  

Axial-velocity projiles of the core flow 

The axial velocity of the core flow can be viewed as a superposition of these components. 
The first one is the undisturbed flow at the inlet, i.e. W = 1.  The second one is the 
accelerated flow due to the displacement effect of the axial boundary layer in an 
unheated pipe. The last component is due to the displacement of the secondary 
boundary layer. Similar to the pressure distribution, the third term in (X, Y,  z )  
co-ordinates is -&8/3, Yz, which means that the axial velocity profile turns anti- 
clockwise around Y = 0. In  the region of z - O(a),  both the second and the third term 
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FIGURE 10. Streamlines on the cross-section. 

increase as z. However, the second term may be dropped when the third term is still 
growing downstream beyond the region of O(a) when Gr is not small. For the cases of 
small Gr (or ReGr),  the second and the third terms will continue growing until the 
flow approaches its fully developed state. 

Velocities on the cross-section 

The radial velocity component U is given in ( 2 5 c ) .  The first term is due to the displace- 
ment effect of the axial boundary layer, which displaces the fluid away from the wall 
and toward the centre of the pipe. The second term represents the motion when the 
fluid leaves the boundary layer over the upper half of the pipe ($7 < q5 < -Zn), and 
enters the boundary layer over the lower half of the pipe ( -  47r < # < $7~). The first 
kind of motion declines downstream, and the second one increases owing t o  heating. 
They become the same order of magnitude when z N O(a/ea). Beyond this point, the 
analysis is not valid any more. For the case of large Gr, the second term becomes 
dominant and the axial length scale will be a/&. For a small Gr, a /& is larger than 
a Re. This suggests that  the next length scale will be a Re; physically, it suggests that 
the flow development will be similar t o  the unheated straight pipe and the solution 
of the slightly heated pipe can be obtained by perturbing the solution of an unheated 
pipe. Along the line 4 = 0,  where V = 0, there is a stagnation point a t  

r = (P,/PI) [e(22)41. (27) 

This is also a saddle point, point P in figure 10, which is similar to the entry flow of a 
curved pipe found by Singh (1974). I n  a heated pipe CP, / , /~~  is smaller than one (table I )  
and the analysis requires the quantity [e(2z)2] to  be smaller than one. Therefore, the 
saddle point P can never move into the boundary layer within the region of O(a).  

Equation ( 2 5 d )  shows that the circumferential velocity has a maximum a t  q5 = in 
and is equal t o  zero at both the top and the bottom of the pipe, 4 = 0 , ~ .  
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Xtreamlines on  the cross-section 
The projection of the streamlines on a cross-section can be computed by 

Equation (28) shows that all streamlines are tangential to the vertical line, 4 = 0 , ~ ;  
they are plotted in figure 10. If z is not too large, the second term in the numerator of 
(28) can be neglected and (28) can be integrated to give 

eP3(2z)  + constant. tan- = exp -~ [ P I T  *I # 
2 (29) 

For E = 0, an unheated straight pipe, (29) becomes r$ = constant. The streamlines on 
the cross-section are radial straight lines. Within the limit of the analysis, the second 
term in the numerator of (28) can never be larger than the first one. Nevertheless, 
stretching somewhat our interpretation of (28) and considering it for large z can 
predict what may occur for the flow development further downstream. Equation (28) 
becomes, after neglecting the first term of the numerator and integrating, 

Z = constant, (30) 

which shows that the streamlines on the cross-section, owing to the displacement 
effect of the secondary boundary layer, are vertical straight lines. The magnitude 

(31) 
of the downward flow is 

which increases downstream. This flow, when Gr is large, will eventually become the 
dominant flow pattern, which is observed by Mori & Futagami (1967). Also, the down- 
ward stream forms a stagnation-like flow locally along the bottom wall of the pipe. 
The convective effect of this locally stagnant flow prevents the boundary layer from 
growing. Thus, the boundary layer will remain thin as the flow moves downstream. 
Therefore, the flow acceleration due to the displacement effect of the axial boundary 
layer will fade out. This suggests that the flow development in the region of O(U/E%) is 
mainly a change in the slope of the axial velocity profile to balance the gradually 
enhanced flow in the secondary boundary layer. Also, the less favourable pressure 
gradient near the top wall of the pipe may become an unfavourable pressure gradient. 
This may be the reason why the separation of the boundary layer occurs further down- 
stream as observed by Mori & Futagami. The downstream solutions are not available, 
but are needed in order to understand the detailed mechanism of the flow separation 
along the top wall of a heated straight pipe. 

(UZ,, + Vz,l)& = P3(22)2, 
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